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With the propagation of a jet of viscous liquid, not mixing with the surrounding medium, 
having a temperature lower than the solidification temperature of the outflowing liquid, 
there is solidification of the jet starting from some part of the surface. If it is assumed 
that the process is equilibrium, solidification of the jet takes place at the point where the 
liquid at the surface of the jet attains the solidification temperature T s. With a steady- 
state process, the region of solidification is propagated downstream, gradually expanding and 
taking in all the new masses of liquid in the jet. Similar processes take place with the 
formation, for example, of synthetic fibers and films from polymer melts [i]. 

Let us consider the problem of the simplification of a jet for the simplest model of a 
liquid, i.e., a Newtonian model. In addition, the model of a Newtonian liquid can serve as 
a good approximation for some more complex liquids~ 

At a physical model of the process we use the scheme shown in Fig. i. At some point Xo 
let the temperature of the liquid at the surface attain the solidification temperature T s. 
From this point, region 3 starts to propagate, ioe., a region of solidifying liquid. The 
boundary between the liquid in the jet and the solid material is the surface of a phase 
transition. Region 1 is the external boundary layer; region 2 is a new boundary layer, formed 
as the result of a sharp change in the boundary condition at the surface of the jet at the 
point Xo. Communications [2, 3] are devoted to the development of such a boundary layer and 
to the determination of the flow parameters in it. Region 4 is occupied by a liquid moving 
in a jet. 

Let us construct the solution in the neighborhood of the point Xo, using the method of 
[2, 3], based on the method of joining asymptotic expansions [4]. As a small parameter we 
use the value of g = d*/~*, i.e., the ratio of the thickness of the displacement of the new 
boundary layer to the thickness of the displacement of the whole boundary layer. In what 
follows we shall assume that the thickness of a filament is equal to a; the flow in region 4 
is isobaric (the pressure of the liquid is equal to the external pressure Pa); the transverse 
gradients are considerably greater than the longitudinal, as a result of which the theory of 
the boundary layer can be used. We write the principal equations (the liquid is assumed to 
be ponderable and incompressible; the gas is imponderable and incompressible; the physical 
parameters of the medium are constant) in the form 

Ou i c)u~ O~-ui [ t ,  i ~ ~, 
u i ~ d - v . ~  = : S i 4 g - t - v . - -  ~ i 4 =  

' ~ O, ~' [0, i=/=4, 
[)tt i Ov i 
o , - 7 @ o 7 = 0  (i = 1,2,  4), 

[ o r  s o r ,  1 s 

F o r  r e g i o n  3 ,  ua = U S = c o n s t ;  va  = O. I n  w h a t  f o Z Z o w s w e a s s u m e  t h a t { p t , e  , c ~ , 2 ,  u ~ , 2 ,  1 1 , 2 }  = 

{pg ,  Cg, Ug, Xg}; {P2,  c 2 ,  X2} = {PS, Cs,  XS}; {04 ,  c . ,  ~)4, 14} ;  {PL, CL, ~L, ZL}" 

I n  t h e s e  f o r m u l a s ,  u i s  t h e  v e l o c i t y  i n  t h e  d i r e c t i o n  o f  t h e  x a x i s ;  v i s  t h e  v e l o c i t y  
i n  t h e  d i r e c t i o n  o f  t h e  y a x i s ;  T i s  t h e  t e m p e r a t u r e ;  g = 9 . 8  m / s e e 2 ;  p i s  t h e  d e n s i t y ;  c 
is the heat capacity; ~ is the thermal conductivity; ~ is the kinematic viscosi_y. 

!. Region i. Introducing the stream function (u i = 8~i/8y, v i =--~i/~x), we write the 
solution in region 1 in the following form: 
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~ = U6* IF o (h) q- e~F~ (h; A) ~- e~-F~ (h; A) -!- . . .  l, 

Q~ = ~*Tr [qo (h) + ~q~ (h; A) + ~q;. (h; A) + . . .  1, 

h :  Y 8" ~ ,  A = -~-, 

(1 .1)  

where Q = [(T- T~)dg; 8"= (u--u~)dy; 5o is the thickness of the displacement at the point 
0 

Xo. The functions Fo and qo determine the profiles of the velocities and the temperatures in 
the external boundary layer in the cross section Xo, and are assumed to be known. Before 
substituting (i.i) into the main equations, we must set 

de ~ vg _,(i~_e?~+g:?~ .), ( 1 . 2 )  
dx 2 U6* ~ "" 

dS* t vg e -  ~ 
ex - 2 o - ~  (~o + s ~  + s~a~ + . . . ) ,  

where yj and uj are some values. After substitution of the solutions, we obtain equations 
for determining Fj and qj, admitting of direct integration, as a result of which we obtain 

I 

~'~ = - ~o  (Fo - h r  + l q F o ,  

h 

t ~t 

q, = (k~ -t- ~ h )  qo, 

h F trf r r ~ 

q~ = k..qo d- T to'q~ + ~ ~z~ (h qo) + t q %  (hqo)" - -  ~ ' z  (kxqo + aohqo) + ~ ((x 1 - -  (x~) hqo + qo j _,2 dh + p r g i  qo__F '~" 
o Fo o 

h t t t  

To d e t e r m i n e  the  term j = r 0 t  '--~ a c o n c r e t e  e x p r e s s i o n  f o r  Fo i s  n e e d e d .  For 
o Fo 

case of a jet issuing downward, the asymptotic solution of [5] can be used. If it is taken 
into consideration that , and Q, far from the source, up to the solidification point can be 

represented as ~ = xIF01~) , Q~g~q0(~), then, from the boundary-layer equations it follows 

tr 

t h a t  F ' "  = (1 - -  k)F'o ~ -  1FoF o, %" = (p - -  k)F'oq" o - -  lFoq o �9 

Using the expression for F'", we can obtain j = --khFo' +.~F~; then, from the expressions 
at infinity it follows that (the velocity of the external flow is equal to zero) ~o = O, 
a~ = ~. Now, using the expression for q'" it can be shown that, with h § ~, q' and q' tend 
toward zero. 

Since the value of z is of a somewhat arbitrary character, there is a certain degree of 
arbitrariness in the choice of the coefficients yj. From Eqs. (1.2) we can obtain 

~* = (~o + ~ - ~ + . . . ) ,  

~o is a know-n quantity. Taking into account that, with x § ~, g § i, and ds/dx § O, 

I + ~I + ~ + . . . .  (I - ~) I + ~- ~o ~- ~ , '  

then YI = O, u = --(i -- ~2/Bo), 

we set 
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Fig .  1 

The c o e f f i c i e n t s  kj  can be d e t e r m i n e d  from the  c o n d i t i o n s  f o r  the  j o i n i n g  of  the  so -  
l u t i o n s  (1 .1)  and the  s o l u t i o n s  in  r e g i o n  2. 

2. Region 2. We r e p r e s e n t  the  s o l u t i o n s  in the  new bounda ry  l a y e r  i n  the  form 

% = e8*UIGo(II; A)-[- eGj(H; A) + ... 1, 

Q., = e6*Ts[Qo(H; A) -+ eQ~(H; A) -[- ...1, H = y,:eS*. 

From the equations of the boundary layer, we can obtain equations for Gj 
| p, 

G~' + ~ G0C,,, =: 0, 

pt tt 

" ' ( < <  2coa, coo,)== G, - -  , - 7  - -  - - -  T "o~o, 

,,, t - ' G '  o " ,, 7o ,, V~ . . . . .  "t "?', -~- % GoG~; G= - -  T ( 2 G o  ~ - -  . ,G , ,G2 - -  G , , G 2 )  = .-] ( g ;  2 - -  2 a , o , )  q -  -ff ( C O G ,  - -  2 G o G ,  - -  g , , g , j  - -  " 2 

for Qj 

! rgG "=0, Qo + ~" P oQo 

Q~, I Prg( "' ' " t prg " +  ") - -  7., G o Q )  - -  G o Q ,  ) = - -  -~ ( G , Q ,  ? t C o Q o  , 

"g( Prg[ " ,,, 1 . . . .  t ' ' 2G,QI '~ " 
. . . .  oc.,,Qo + Q2 7 P~ 2G~ G~ ~ G,Q, - -  

it tt o n 

+ % (G'oQi - -  G,Qo) - -  ?t (GtQo -'~ aoQ, ) - -  (7, + a.)  GoQ. ]. 

form 
The boundary conditions at a moving filament for the flow function can be written in the 

a j ( o ; a )  o , c ' o ( o ; A )  % ' = = -if ,  c,~ (o; A) =: 0 (j > o). 

The velocity of a filament is determined from the condition of the conservation of mass 

1 

U s = U/o (n) dn 

(Uf~(n) is the profile of the velocities in the cross section xo in the jet); in the general 
case U S # U. Let us consider the case where U S = U, which holds out the possibility of ob- 
taining simple asymptotic expressions for Gj 

G O --= H, G 1 =: B f l  ~-, G2 = B,,~(H ~ -1-" 6H) 

and for Qj 

( v i  ) Qo= Mo, Q; = K, X +  7 zdH  + M~It '  
0 

H H 

(; s) O'2 = - + B~KaHI + K2 x d H  -+- H I  + y Vrg/I" ~dH + M~ ( H  ~ + 2PrT'),  
" 0  0 

! Pr H 2 

x_--e -7 g g, (2.1) 
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Here, for brevity, certain terms which are equal to zero are not written out. Using 
the rule for the joining of asymptotic solutions, we obtain 

" "" ~ F;'  (o); B l  = ~f I~ o (0), B~ = Z'.' 

oo 

r~ f K1 Prg S " k 1 = 0 ,  /,:.,=0; M , : = I  r ' 2 z d l t  q - M ' = q ~  
0 

y K., . %dH q- M~ = V qo (0). 
0 

(2.2) 

The values of Kj(A) and Mg(A) can be found from the joining of the solutions at the 
boundaries of regions 2-3 and 3-4. 

3. Region 3. In region 3 we set 

Qs=  e26"-~(}2+ e}a +. . . )[go(N; A) + egl(N; 5) + . . . ] ,  

N =  'I/ 
e"8* (p, + ~ a  + "")  ' 

where Bj 
of this 

! 
For the functions gj we have the simple dependences 

t p ! s 

go ~ Coo'~ Col N,  g*=- C lo - t -CnN,  g~ = C,ao ~ C~tN, ga = Cao ~ Cai N, (3.1) 

where Cij(&) can be determined from the boundary conditions with N = 0 and N = --I. 

4. Region 4. In this region, we write the solutions in the form of the following ex- 
pansions (the coordinate y is reckoned from the axis of the jet): 

(A) are some values, determining the position of the phase interface. The equation 
surface is determined by the expression N = --i, i.e., y, = --e2~*(~2 + r + ...). 

r  := Ub[lo(n) -I- ~;A(n; A) + e'7,,(n; A) + ... ], 
Qa -- TsblOo(n) q- e01(n; A) q- e20.,(n; A) -~ ... ], 

b -=  a - -  e26*(p , z  q -  e~a -~- ...), n = g/b. 

(4.1) 

After substitution of (4.1) into the equations of the boundary layer, we obtain the 
expressions 

n $ ~ n it! 

7 A ( / .  - -  n]o) + - -  .-p-7-r /o ! 77-~ -r- -..-v-,, ,..," --.~ ,o dn, (4 .2 )  
' (1.2 a" 

2 6oA( 2 ) , 
/a = - -  7 ?~1"- q-  - g  Pa ~- -g- ~e~! ( fo  - -  n / o ) ;  

O~ = O, (4,3) 

~r A ~  2 n n ,t* , $ 2  ,/ 

: _  & , A Rog., Cd. +Ta  LOo, CSoa a. 0., 
o , o  o /o" g ]o 

In  f i n d i n g  t h e s e  s o l u t i o n s  i t  was assumed t h a t ,  as  a r e s u l t  of  symmetry  
tt 

lJ (o) = o, l j  (o) = o, oj (o) = o. 

The functions fo(n) and 0o(n) are assumed to be known. They determine the profiles of 
the velocities and temperatures in the jet in the cross section xo. 

5. Determination of Phase Interface. Since the flow in region 4 is assumed to be iso- 
baric, then, at the liquid--solid phase interface the condition is satisfied 

r = r~. (5 .  l )  

505 



Another condition must be the equality of the heat fluxes, taking accouDt of the latent 
heat of the phase transit$on, In the statement adopted, the boundary !ayer i~ a liquid ad- 
jacent to a solid phase is excluded from the discussion, i.e., here a model of a flow with 
a phase transition, with slip of the phases at the interface and a jump in the temperatures, 
is adopted. Such a model is frequently used with the flow of condensate films [6]. In this 
case, the boundary condition at the interface has the form 

Ors l 
- -  ~kS-~'~J ' t,j, = rPLV' ["* + PL v4 Iv* c L (T4 -- Ts)I~,, (5.2) 

where r is the heat of the phase transition. 

At the surface of a moving filament, the equalities of the temperatures and the heat 
fluxes must be satisfied, i.e. 

T~.lu=o = Tsly=o; 
aT 21 ors l 

Xg-~Fl,=o = X s - ~ F l . = /  

(5.3) 

(5.4) 

Using the analytical dependences (2ol), (3.1), (4.2), and (4.3), from the boundary 
conditions (5.1)-(5.4) and the relationships (2.2) we find 

Coo=t- - - -r~  Col : Clo ----- Cn --- 0, C~.o=C21=--2PL~gr I]~X 
r s ' "-~'s ~T 

6:A(R gf , a .  , 
\ o/o V'~g [ , ,  )] / ogl.  1. ,,, 

Ca. C.. PLVg r 5# ,~ . - -2  8~ j f l .~ + v R d  f l  ~" 
~S TS a 

0 J0 - 0  J0  

K 1 ----- 0 ,  

- 3 PLvg r Prg 
311=qo(0), K , , = - -  2 Zg r~J~a' M 2 = - ~ C 2 o .  

Finally, from the boundary conditions (5.4) we determine 

1 

,  LCJo A !g_r g(O) 
[~2 = ' - a - A  \ F r  oJ]'o ~ -i--~'~/J '7~'~ '~/go fO y 2 pLVgr 

(? 1 4 ~g rs " 0 t ~g ,' 
~8 = --"~" pr--~Lvg r - - - -  o zdH go ( ) -- T Prg-~sJ3,qo (0) . 

(5.5) 

Thus, analytical expressions have been obtained for the flow parameters in the neighbor- 
hood of the point Xo. Within the framework of boundary-layer theory, the point Xo is a 
singular point. 

With U # US, in the neighborhood of this point, T w rises unboundedly; in the case under 
consideration, the continuity both of the velocities and the temperatures, as well as of the 
friction stress and the heat flux from the jet to the gas, is conserved. Let us write for- 
mulas for the temperature and the heat flux at the surface of a filament 

T = T s { I +  g" '~g-f-s ~.,qo" (0)}, 

,, PLug 1" ] q--xr 6 g 

from which it can be seen that the continuity of T and q at the point Xo is retained. 
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An interesting special characteristic of the solidification process under consideration 
is the fact that the region 3 appears in the form of a sharp edge. This can be seen from 
the expression y, = -~2d* (82 + sBz + ...), differentiating which with respect to x we will 

dy, a'O " ~'g__ have :=--~ , i.e., the angle between a tangent to the surface and the x axis has a 

finite value. 

It must also be added that the formulas obtained (5.5) (U = U S ) are valid also in the 
case where there is a velocity of the external flow. Under these circumstances, the effect 
of the value and direction of the velocity will appear through the value of q~(0). If we 
set Prg = i, from the Crocco integral [7], we can obtain 

q o - - ~ - - ~  t - -  r s /  then qo(O)--~g U--Uo~ ~ss " 

This value can serve for an evaluation of the effect of the velocity of the flow and 
the temperature of the external medium on the solidification process. 
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TRANSONIC FLOWS OF GAS IN LAVAL NOZZLES WITH LOGARITHMIC SPECIAL 

FEATURES IN THEIR LIMITING CHARACTERISTICS 

A. L. Brezhnev UDC 533o6.011 

In flat Laval nozzles there are three types of asymptotic flows in the neighborhood of 
the center [i]. This conclusion was reached using the theorem of Brio and Buke [2] with 
respect to the behavior, near a singular point (image of the limiting characteristic), of 
the general integral of the ordinary differential equation to which a study of self-similar 
transonic flows reduced. It has been found that, with some values of the index of the self- 
similarity, any given integral curve can be analytically prolonged through this singular 
point, which is a mesh point in the problem of nozzle flows, With the consideration of flows 
in nozzles with a round transverse cross section, it is useful to consider the same indices 
which are considered in the theorem. It is well known [3] that, in this case, there is a 
second possible alternative: None of the integral curves passing through the mesh point, 
with the exception of an isolated whisker, yield an analytica ! continuation. This re]ates 
also to a whisker of general direction. In other words, a whisker of general direction 
holds out the possibility of an analytical prolongation with any given self-similarity index, 
with the exception of those considered in the theorem. In [4], a second asymptotic type of 
flow in the neighborhood of the center of an axisymmetric nozzle is constructed numerically 

Saratov. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, 
pp. 88-91, July-August, 1980. 
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